On the improvement of concavity of convex measures
نویسنده
چکیده
We prove that a general class of measures, which includes logconcave measures, is 1 n -concave according to the terminology of Borell, with additional assumptions on the measures or on the sets, such as symmetries. This generalizes results of Gardner and Zvavitch [8].
منابع مشابه
Numerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes
In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...
متن کاملSome concavity properties for general integral operators
Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.
متن کاملClump splitting through concavity analysis
We present a novel method of decomposing digital binary clumps into constituent convex parts. The algorithm is based on the analysis of concavities to determine where splitting should occur. Two relative concavity measures, concavity degree and concavity weight, are also defined.
متن کاملEvaluation of the concavity depth and inclination in jaws using CBCT
Introduction: Nowadays, using implants as a choice in patient's treatment plans has become popular. The aim of this study was to determine the prevalence of mandibular lingual and maxillary buccal concavity, mean concavity depth and angle and its relation to age and gender. Materials and Methods: In 200 CBCT, concavity depth and angle were measured in 2 mm superior to the inferior alveolar c...
متن کاملOn the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014